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Abstract—For vehicular ad-hoc networks (VANETs), edge
caching has attracted considerable research attention to maxi-
mize the efficiency and reliability of infotainment applications.
In this paper, we propose a two-layer distributed content caching
scheme for VANETs by jointly exploiting the cache at both
vehicles and roadside units (RSUs). Specifically, we formulate
content caching problem to minimize the overall transmission
delay and cost as a nonlinear integer programming (NLIP)
problem and propose an alternate dynamic programming search
(ADPS) based algorithm to solve it. In ADPS, we divide the
original problem into three sub-problems, then we use the
dynamic programming (DP) method to solve each sub-problem
separately. To reduce the complexity, we further propose a
cooperation-based greedy (CBG) algorithm to solve the large
scale original problem. Both numerical simulation results and
experiments in testbed show that the proposed caching scheme
outperforms existed caching schemes, the transmission delay and
cost can be reduced by 10% and 24% respectively, while the hit
ratio can be increased by 30% in a practical environment, as
compared to popularity-based caching scheme.

Index Terms—VANETs, Infotainment Application, content de-
livery delay, content delivery cost, edge caching scheme

I. INTRODUCTION

H IGH-QUALITY vehicular infotainment applications in
VANETs, such as in-car entertainment or mobile adver-

tising, have gained considerable attention in recent years. As
an example, using interactive screens installed on vehicles,
on-board passengers can browse the list and request interested
media contents. This is an attractive value-added service to
transportation operators such as taxi companies or peer-to-
peer vehicle sharing companies like Uber. For these type of
applications, the primary concern is to meet the stringent
requirements of quality of service (QoS). Unlike other ap-
plications, such as secure message dissemination or adaptive
traffic management, infotainment application can significantly
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impact the amount of data exchanged in VANETs. The high
volume of exchanged data will degrade QoS, such as delivery
delay. Moreover, from the perspective of operator, the high
randomness and high concurrency feature of infotainment
application raise challenges for some performance metric of
the network, such as content hit ratio. And this may also result
in QoS degradation.

Besides, for infotainment applications, the cost of data
transmission is also very considerable due to the excessive
amount of data to be transferred. Compared with investment
into the construction of VANETs, content storage cost, which
corresponds to the cost of updating the contents, can be
negligible. Hence for operators, it is expected that the cost of
wireless mobile communications will become a major source
of operational expenses of infotainment application service.
The operators need to maximize the revenue and reduce the
expense. Hence, taking a commercial perspective, how to
reduce the communication cost for infotainment applications
has become a crucial problem. Clearly, the cost per unit
data transmission varies when the vehicle fetch contents from
different nodes in VANETs. If a vehicle always need to
fetch content from a remote server, then the total cost of the
operator’s service will be high.

To address the two problems above, VANET edge caching is
proposed to facilitate content delivery. That is, each RSU can
selectively store media contents and distribute them to vehicles
[1]. However, the caching resource of RSU is constrained.
Meanwhile, when vehicles drive through different RSUs, the
vehicular connections are always intermittent due to the lim-
ited coverage area of RSU. Hence, compared with sole RSU
caching, using vehicles for cooperative caching is helpful and
reasonable. This cooperation among RSUs and vehicles can
provide seamless connections within the interlaced coverage of
RSUs. Moreover, the contents for infotainment applications al-
ways have different request probability. Hence, a more precise
content caching scheme is required, i.e., determining whether
to cache a specific content on a specific network node (RSU
or vehicle). With this caching scheme, users can access their
required contents directly from a much closer RSU or vehicle,
which can remarkably decrease the content retrieval delay and
transmission cost. The limited storage capacity of vehicles and
RSUs can be fully utilized to improve network performance
in terms of average content delivery delay, average content
delivery cost, and cache hit ratio.

There has been a number of researches focusing on caching
in device-to-device (D2D) mobile networks [2]–[13]. Sun et
al. [2] propose mobility-aware caching strategies in D2D
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networks to minimize the network delay. Wang et al. [5]
take advantage of the user mobility pattern by the inter-contact
times between different users, and propose a mobility-aware
caching placement strategy to maximize data offloading ratio.
Some of these works study edge caching for conventional
cellular networks. However, they have different emphases
from the works for VANETs. Firstly, in conventional cellular
networks, the network topology is relatively stable. So that
server switching is not very frequent. Secondly, the power and
storage of a mobile device in a conventional cellular network
are limited, so it is inappropriate to choose mobile devices as
caching servers or relays. Thirdly, the works always use inter-
contact model to characterize the mobility pattern, but this
model is insufficient in dealing with practical vehicle mobility.

In vehicular networks, most researches focus on caching at
RSU layer. Ding et al. [14] propose a centralized RSU caching
algorithms to minimize the average time that an onboard unit
(OBU) downloads a file. Hu et al. [15] study the scenario
of RSU caching, where multiple content providers try to
improve the data dissemination efficiency of their own contents
by utilizing the storage of RSUs. Su et al. [16] propose a
model to determine whether and where to obtain the replica of
content upon the request of a vehicle. They propose a cross-
entropy based dynamic content caching scheme. Qin et al.
[17] propose a hierarchical end-edge framework with the aid
of computation offloading and content caching to minimize
network overheads. AlNagar et al. [18] propose a cooperative
proactive caching scheme between RSUs to minimize the
communication latency and enhance QoS in VANETs. Ma
et al. [19] propose a caching placement policy based on the
cloud-based vehicular ad-hoc network (VANET) architecture
to minimize the average latency of content retrieve. Hou et
al. [20] propose a Q-learning-based proactive RSU caching
strategy under the support of long short-term memory (LSTM)
neural network, aiming at enhancing the QoS for non-safety
related services in vehicular networks.

Caching at vehicular layer via vehicle-to-vehicle (V2V)
communications reduces transmission delay and bandwidth
competition, as compared to RSU caching. Hu et al. [21]
propose an in-vehicle caching framework based on an inno-
vative integration of distributed storage with cached content
relay facilitated by one-hop V2V links. They design a dynamic
distributed storage relay (D2SR) mechanism, which ensures
the survival of cached contents with a high probability within
the time duration of interest. Yao et al. [22] propose a
cooperative caching scheme based on social attributes and
mobility prediction for vehicular content centric network with
higher cache hit ratio and lower content access delay compared
to other state-of-the-art schemes. Deng et al. [23] propose an
optimal retention-aware caching scheme to minimize network
cost. Zhang et al. [24] model the interactions between caching
vehicles and mobile users as a two-dimensional Markov
process and propose an online vehicular caching scheme by
optimizing network energy efficiency. Han et al. [25] develop
a dynamic pricing-based incentive mechanism for content
sharing in cellular vehicle-to-everything (C-V2X) based ve-
hicular network to improve the successful delivery ratio and
energy efficiency. Yang et al. [26] propose a secure caching

placement and delivery algorithm to minimize the maximum
vulnerability among all vehicular users.

A few schemes also studied cross-layer cooperative caching
[27], [28] (i.e., Cooperative caching in RSUs and/or vehicles
and/or base stations (BSs)). Chen et al. [27] propose a
cooperative edge caching scheme based on the heterogeneous
vehicular networks (H-VNets) with multi-tier edge caching
servers (i.e. at BS and RSUs). Qiao et al. [28] design a novel
edge caching framework based on the cooperation among base
station, RSUs, and vehicles. Then, the joint vehicle scheduling
and bandwidth allocation scheme is designed to minimize the
content access cost while satisfying the constraint on content
delivery latency.

Existing literature is mostly based on the VANETs with
simple one-layer structure (e.g., vehicular layer or RSU layer).
Their edge caching schemes usually consider vehicular down-
loading applications with a single QoS metric. At the same
time, few research addressed the commercial perspective and
investigated the data transmission cost issue. In this paper,
we consider joint caching of vehicles and RSUs. The paper
aims to fulfill two main objectives. Firstly, full utilization of
limited caching capacity of vehicles and RSUs to satisfy as
many content requests as possible. Secondly, determining ap-
propriate caching scheme to minimize the overall transmission
delay and cost. We form the two-layer caching scheme design
as a NLIP problem. Because the problem is neither linear
nor convex, we propose an ADPS based algorithm to solve
the NLIP problem. In ADPS, we divide the original problem
into three sub-problems, then we use DP method to solve
each sub-problem separately. Furthermore, we propose a low-
complexity CBG algorithm to solve the large scale original
problem. The results of numerical simulation and test bed
verification show our proposed caching scheme outperforms
existed caching schemes in transmission delay, cost and hit
ratio. The main contributions of this paper are listed as follows.
• We propose a novel two-layer cloud-based VANET edge

caching model, consisting of RSU cloud (RC) layer and
vehicular cloud (VC) layer. In this model, the networks
nodes (e.g., vehicles, RSUs) have different communi-
cation interfaces as well as heterogeneous computation,
communication and storage capacities. Vehicles may sub-
mit multimedia content request, which are offloaded to
different network nodes based on a certain scheduling
algorithm.

• Considering vehicle mobility and content retrieve process
in our model, the average transmission delay, cost and hit
ratio are analytically derived. Then, considering the lim-
ited caching capacity of different nodes, the joint vehicle
and RSU optimized caching problem is formulated as a
NLIP problem.

• We propose an ADPS algorithm to solve the formulated
NLIP problem. This algorithm divides the original prob-
lem into three sub-problems. The sub-problem is refor-
mulated as a multi-stage decision problem and be solved
stage-by-stage recursively. The result of this algorithm is
called ADPS caching scheme.

• Inspired by the result of ADPS, a CBG algorithm with
linear complexity is proposed. This algorithm can give
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a good enough sub-optimal solution, at the same time,
reduce the complexity of computing significantly. So it
is more perfect to very large scale network model. The
result of this algorithm is called CBG caching scheme.

• In addition to numerical simulation, the system model is
fully implemented in a prototype VANET using real OBU
and RSU devices and real cloud computing service. Both
simulation results and test bed evaluation show that our
proposed caching schemes have the advantage over other
caching schemes.

The rest of the paper is organized as follows. Section II gives
the system model and problem formulation. Section III and IV
respectively propose the ADPS and CBG caching scheme. The
simulation results are provided in Section V. In Section VI, test
bed evaluation is shown. Finally, Section VII concludes this
study.
Notation: Bold lower case letters and bold upper case

letters are used to denote column vectors and matrices, re-
spectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the network model, communi-
cation model, and content distribution model, respectively. We
analytically derive the average transmission delay, cost and hit
ratio, and then formulate the NLIP problem. This problem is
key for caching scheme decision. The primary notations used
in this section are summarized in Table I.

A. Network Model

As shown in Fig. 1, we consider a bidirectional road
scenario, including vehicle, RSU and base station (BS). The
whole VANETs can be divided into two layers: RSU cloud
(RC) layer and vehicular cloud (VC) layer. In RC, the RSUs
are connected via backbone network to form a computing
cloud and all RSUs are termed as RC members. VC is formed
by moving vehicles within a specific area. Each VC has a VC
controller (VCC) which manages caching resource and other
vehicles are termed as VC members. VCC can be selected
through appropriate algorithms for a VC. In the network, BS
and content provider (CP) connect to the Internet through the
backhaul link. CP is generating a different set of contents.
Based on user interest, if the requested content has been
cached at VC and/or RC, it can be delivered to the vehicle
by VC and/or RC, depending on the trajectory of the vehicle
and the locations of cached contents.

Without loss of generality, we focus on the coverage area
of one BS, within which NRC RSUs are deployed along
the road using dedicated short-range communication (DSRC)
access technology to communicate with vehicles. The coverage
areas of different RSUs are assumed to be overlapping and
the communication range of RSU is denoted by r. RSUs and
vehicles are equipped with caching capacity, with the storage
capacity denoted by SR and SV , respectively. A network
management controller is deployed at BS, which collects
information from vehicles and RSUs and makes decisions on
content caching [29].
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Fig. 1. System model.

TABLE I
PRIMARY NOTATIONS

Notation Definition
System Elements
Vj(t) Number of vehicles entering entrance j
V Cj(t) Number of V Cj entering entrance j
λj Average arrival rate of entrance j
µj The expectation of V Cj(t)
Sq Data size of content l
L Number of contents in the networks
p(l) Request probability of content l
NV Cj

Number of vehicles in V Cj

NRC Number of RSUs in RC
SV Caching capacity of vehicle
SR Caching capacity of RSU
r The coverage range of RSU
v The average velocity of vehicles
RV V Data transmission rate for delivering the requested

content between vehicles
RRV Data transmission rate for delivering the requested

content from nearest RSU
RRCV Data transmission rate for delivering the requested

content from RC members
RPV Data transmission rate for delivering the requested

content from CP through remote server
PV V Price for delivering unit data between vehicles
PRV Price for delivering unit data from nearest RSU
PRCV Price for delivering unit data from RC members
PPV Price for delivering unit data from CP through remote

server
Analytical Symbols
τj,l The download delay for entire V CJ receiving the

whole requesting content l
τav The average delay incurred by an arbitrary content

request
〈f (.)〉0 〈f (.)〉0 equals 1 if f (.) > 0 or 0 if f (.) = 0
τi,j,l Delay to obtain content l for vehicle Vi in V Cj

Ri,m,l,j Data transmission rate for vehicle Vi in V Cj to
download content l at RSUm

δ
V Cj

i,m,l
Whether vehicle Vi in V Cj has completely obtained
the content l from RSUm

D
V Cj

i,m,l
The cumulative download of the content l when the
vehicle Vi in V Cj leaves the cover area of RSUm.

Costav The average cost incurred by an arbitrary content
request

Costi,j,l Cost to obtain content l for vehicle Vi in V Cj

Costi,m,l,j Cost for vehicle Vi in V Cj to download unit data
from content l at RSUm

CV Cj Binary cache placement matrix for V Cj and the
dimension is NV Cj

× L
CRC Binary cache placement matrix for RC and the di-

mension is NRC × L
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B. Vehicle Mobility Model

In our model, vehicles take platoon-based driving pattern
[30], which is a cooperative driving pattern for a group of
vehicles with common interests. The speed of the platoon
leader VCC is within [vmin, vmax] [31]. Other vehicles adjust
their speed with the goal of tracking the speed of VCC and
keeping a constant inter-vehicular space gap [32]. The average
velocity of vehicles is v = (vmin+vmax)/2. We assume there
is one entrance at each end of the road. The number of vehicles
entering entrance j (j = 1, 2), denoted as Vj (t), is time-
varying and follows a Poisson distribution with the parameter
λj , which denotes the average arrival rate [14], [21], [33].
Then we have:

P (Vj (t) = k) =
(λjt)

k

k!
e−λjt, k = 1, 2, · · · . (1)

The expectation of Vj(t) is E [Vj(t)] = λjt. V Cj (t)
denotes the number of V Cj entering entrance j. NV Cj denotes
the number of vehicles in V Cj . Apparently, V Cj (t) =
Vj (t) /NV Cj

. µj denotes the expectation of V Cj(t). Then:

µj = E [V Cj(t)] = E

[
Vj(t)

NV Cj

]
=

λj
NV Cj

t, j = 1, 2. (2)

C. Content Distribution and Retrieve Process Model

Contents = {1, 2, · · · , L} denotes the set of content piece,
with the size Sq of each content, which is constantly updated
by adding new contents. Considering that some content may
be requested more frequently than others, we assume the
popularity of content follows a Zipf distribution [34]. The
probability that content l is requested is given by:

p(l) =
l−γ∑L
i=1 i

−γ
, (3)

where γ is the parameter of the Zipf distribution.
For vehicle Vi (1 ≤ i ≤ NV Cj

) in V Cj and RSUm (1 ≤
m ≤ NRC) in RC, we denote binary cache placement matrices
at vehicles and RSUs by CV Cj and CRC respectively, where

CV Cj =
[
c
V Cj

i,l

]NV Cj
×L

,CRC =
[
cRCm,l

]NRC×L
, (4)

c
V Cj

i,l , cRCm,l denote the discrete cache placement indicator for
content l in vehicle i and RSUm respectively.

c
V Cj

i,l , cRCm,l =


1, if the content l is decided to be cached

in vehicle Vi of V Cj or RSUm,
0, otherwise.

(5)
The content request process is shown in Fig. 2. It should be

noticed that each RSU can cooperate with other RC members
to fulfill the content request. That means, if a piece of content
is cached in one RC member, then all RC members can use
it to respond a vehicle’s request. We say a hit occurs when
the requested content l from moving vehicle Vi in V Cj can be
fulfilled by its cache, V Cj or RC. If that still fails, the request
can only be fulfilled by CP through the remote server and no
hit occurs in this case. So, hit occurrence depends on whether
the content requested by the vehicle matches the content
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Fig. 2. The process of obtaining the requested content when a vehicle enters
the coverage of RSU.

cached in VC and RC. When the content request is satisfied
by the VC members, the serving RSU, the RC members, and
the CP, the data transmission rates are respectively denoted by
RV V , RRV , RRCV , RPV . In terms of data transmission cost,
the corresponding prices caused by transmitting unit data are
denoted by PV V , PRV , PRCV , PPV . It is reasonable to assume
that RV V > RRV > RRCV > RPV , PV V < PRV <
PRCV < PPV . The transmission delay and cost are 0 if a
requesting vehicle obtains the content from its own cache.

D. Average Content Delivery Delay
When V Cj members enter entrance j, vehicles in V Cj

will start to download the requested content l. We define τi,j,l
as the delay for vehicle Vi in V Cj to completely download
the requested content l. The download delay for entire V Cj
receiving the whole requesting content l is τj,l. Considering
that each content has a different request probability, the
expectation of τj,l is:

E [τj,l] =

L∑
l=1

p(l)
1

NV Cj

NV Cj∑
i=1

τi,j,l. (6)

The average delay incurred by an arbitrary content request,
denoted by τav , can be calculated as:

τav =

2∑
j=1

µjE [τjl]

µ1 + µ2
. (7)

When a vehicle crosses RSUm, we need to consider the
downloading data rate Ri,m,l,j of vehicle Vi in V Cj , and
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calculate the total downloading data rate for V Cj and RC.
We use RV Cj

i,m,l to denote the transmission rate satisfying users
request within V Cj , then:

R
V Cj

i,m,l =
(

1− cV Cj

i,l

)〈 NV Cj∑
n=1,n6=i

c
V Cj

i,l

〉
0

RV V (c
V Cj

i,l 6= 1),

(8)
where

〈f (.)〉0 =

{
0, if f (.) = 0,

1, if f (.) > 0.
(9)

In (8),
(

1− cV Cj

i,l

)〈∑NV Cj

n=1,n6=i c
V Cj

i,l

〉
0

indicates the event
that the desired content is not cached in Vi, but the content
can be found in other V Cj members.

Similarly, if the request is not satisfied within V Cj and is
forwarded to RC, then the transmission rate RRCi,m,l is:

RRCi,m,l = cRCm,lRRV +
(
1− cRCm,l

)〈 NRC∑
k=1,k 6=m

cRCm,l

〉
0

RRCV

+

(
1−

〈
NRC∑
k=1

cRCm,l

〉
0

)
RPV .

(10)
Considering (8) and (10), the total download transmission rate
is:

Ri,m,l,j = R
V Cj

i,m,l +

1−

〈NV Cj∑
n=1

c
V Cj

i,l

〉
0

RRCi,m,l, (11)

where
(

1−
〈∑NV Cj

n=1 c
V Cj

i,l

〉
0

)
indicates that the request fails

within V Cj .
Next, we use δV Cj

i,m,l to indicate whether vehicle Vi in V Cj
has completely obtained the content l from RSUm, where:

δ
V Cj

i,m,l =


1, if the vehicle Vi in V Cj has completely

obtained the requested content l from RSUm,

0, otherwise.
(12)

When the vehicle Vi in V Cj leaves the cover area of RSUm,
we let DV Cj

i,m,l to denote the cumulative download of the content
l. We have:

DV C1

i,m,l =
∑

1,2,··· ,m
Ri,m,l,1

r

v
,

DV C2

i,m,l =
∑

m,m+1,··· ,NRC

Ri,m,l,2
r

v
.

(13)

Based on above analysis, we have:

τi,1,l =



0, if C1,
Sq

Ri,m,l,1
, if C2,

r(m−1)
v +

Sq−D
V C1
i,m−1,l

Ri,m,l,1
, if C3,

rNRC

v +
Sq−D

V C1
i,NRC,l

R
V C1
i,m,l

+
(
1−
〈∑NV C1

n=1
c
V C1
i,l

〉
0

)
RPV

, if C4,

(14)

C1 : cV C1

i,l = 1; C2 : δV C1

i,m,l = 1,m = 1, cV C1

i,l 6= 1;

C3 : δV C1

i,m,l = 1,m ∈ {2, 3, · · ·NRC} , cV C1

i,l 6= 1;

C4 : ∀m ∈ {1, 2, 3, · · ·NRC} , δV C1

i,m,l = 0, cV C1

i,l 6= 1.

(15)

In (14) and (15), C1 means the vehicle can get the content
in local cache, and the delay is 0. C2 means the vehicle
complete the download from the first RSU it passed. In C3
situation, the vehicle cannot complete the download from the
first RSU, but it can complete the download before the last
RSU. C4 means when the vehicle passed the last RSU, the
download still can not be completed and the unfinished content
is obtained through the remote server. The analysis process of
τi,2,l is similar to that of τi,1,l.

E. Average Content Delivery Cost

The total average delivery cost can be calculated as:

Costav =

2∑
j=1

L∑
l=1

NV Cj∑
i=1

µj
µ1 + µ2

p(l)

NV Cj

Costi,j,l, (16)

when the vehicle Vi in V Cj passes RSUm, the unit data
transmission cost Costi,m,l,j is:

Costi,m,l,j =
(

1− cV Cj

i,l

)〈 NV Cj∑
n=1,n6=i

c
V Cj

i,l

〉
0

PV V

+

1−

〈NV Cj∑
n=1

c
V Cj

i,l

〉
0

 [cRCm,lPRV +
(
1− cRCm,l

)
〈

NRC∑
k=1,k 6=m

cRCm,l

〉
0

PRCV +

(
1−

〈
NRC∑
k=1

cRCm,l

〉
0

)
PPV ].

(17)
When the vehicle Vi in V Cj passes RSUm, the total

transmission cost CostV Cj

i,m,l is

Cost
V Cj

i,m,l =
r

v
Ri,m,l,jCosti,m,l,j . (18)

The transmission cost sum Costsumi,m,l,j can be calculated as:

Costsumi,m,l,1 =
∑

1,2,··· ,m
CostV C1

i,m,l,

Costsumi,m,l,2 =
∑

m,m+1,··· ,NRC

CostV C2

i,m,l.
(19)

To completely download the content ql, the total cost of the
vehicle Vi in V C1 is:

Costi,1,l =
SqCosti,m,l,1, if C1,

Costsumi,m−1,l,1 +
(
Sq −DV C1

i,m−1,l

)
Costi,m,l,1, if C2,

C4, if C3,
(20)
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where

C1 : δV C1

i,m,l = 1,m = 1; C2 : δV C1

i,m,l = 1,m ∈ {2, 3, · · ·NRC} ;

C3 : ∀m ∈ {1, 2, 3, · · ·NRC} , δV C1

i,m,l = 0;

C4 : Costsumi,NRC ,l,1 +
(
Sq −DV C1

i,NRC ,l

)
[
(

1− cV C1

i,l

)
〈 NV C1∑
n=1,n6=i

cV C1

i,l

〉
0

PV V +

1−

〈NV C1∑
n=1

cV C1

i,l

〉
0

PPV ].

(21)
The analysis process of Costi,2,l is similar to that of Costi,1,l.

F. Average Content Delivery Hit Ratio

When the vehicle Vi in V Cj has completely downloaded
the content l, we can get the number of hits and the total
number of RSUs that Vi has passed. Let hitratioi,l,j denote
their ratio, then the average hit ratio can be calculated as:

hitratioav =

2∑
j=1

L∑
l=1

NV Cj∑
i=1

µj
µ1 + µ2

p(l)

NV Cj

hitratioi,l,j .

(22)

G. Problem Formulation

In infotainment applications for VANETs, delay is a critical
indicator of user experience to obtain desired content. Another
key point is the cost. The caching scheme will affect delay and
cost significantly. In this paper, we aim to make full use of
the limited storage capacity of vehicles and RSUs to reduce
the overall transmission delay and cost. Then the joint vehicle
and RSU caching optimization problem can be formulated as:

PC : min U(CV C1 ,CV C2 ,CRC)

s.t.∑L
l=1 c

V C1

i,l ≤ SV , cV C1

i,l ∈ {0, 1} , i = 1, 2, · · ·NV C1
,∑L

l=1 c
V C2

i,l ≤ SV , cV C2

i,l ∈ {0, 1} , i = 1, 2, · · ·NV C2
,∑L

l=1 c
RC
m,l ≤ SR, cRCm,l ∈ {0, 1} ,m = 1, 2, · · ·NRC ,

l = 1, 2, · · ·L.
(23)

U(CV C1 ,CV C2 ,CRC) = α
τav
τmax

+ β
Costav
Costmax

=

L∑
l=1

2∑
j=1

NV Cj∑
i=1

µj
µ1 + µ2

p(l)

NV Cj

(α
τi,j,l
τmax

+ β
Costi,j,l
Costmax

),

(24)
where α and β are the weight parameters which can be
adjusted according to user’s preference. τmax and Costmax
are the maximum tolerable delay and download cost when
the content is completely downloaded. In the worst case, the
requested content can only be found in a remote server, and
then τmax = Sq/RPV , Costmax = SqPPV . The constraint in
(23) indicates that the content in each vehicle and RSU cache
cannot exceed its capacity. In the objective function of (24),
we use τav

τmax
and Costav

Costmax
for normalization.

Noting that problem PC is a 0-1 NLIP problem, which is
usually NP-hard and difficult to solve. The objective function
of problem PC (24) is very complicated, which makes problem
PC impossible to be handled by any convex relaxation tech-
niques.1 In the following sections, we will propose effective
algorithms to solve it. The problem of finding the global
optimal CV C1 ,CV C1 and CRC can be treated as a future
extension of this paper.

III. ADPS JOINT VEHICLE AND RSU CACHING SCHEME

In this section, inspired by alternate convex search (ACS)
algorithm [35] [36], an alternate dynamic programming search
(ADPS) algorithm is proposed to solve problem PC . At first
we divide the original problem into three sub-problems. Then
we solve each sub-problem using DP method. At the sepa-
ration step, each time we choose two matrices and fix them,
then a sub-problem is created. This strategy will generate three
simplified sub-problems for problem PC :

PC1 : min U(CV C1

fix ,C
V C2

fix ,C
RC)

s.t.
∑L
l=1 c

RC
m,l ≤ SR, cRCm,l ∈ {0, 1} ,

m = 1, 2, · · ·NRC , l = 1, 2, · · ·L,
(25)

PC2 : min U(CV C1 ,CV C2

fix ,C
RC
fix)

s.t.
∑L
l=1 c

V C1

i,l ≤ SV , cV C1

i,l ∈ {0, 1} ,
i = 1, 2, · · ·NV C1

, l = 1, 2, · · ·L,
(26)

PC3 : min U(CV C1

fix ,C
V C2 ,CRC

fix)

s.t.
∑L
l=1 c

V C2

i,l ≤ SV , cV C2

i,l ∈ {0, 1} ,
i = 1, 2, · · ·NV C2

, l = 1, 2, · · ·L.
(27)

Problem PC1, PC2, PC3 are still NLIP problem and have
similar structure. Next, an optimal DP algorithm will be
proposed to solve these three sub-problems separately.

A. Dynamic Programming Algorithm

DP is an effective algorithm to handle integer variables by
breaking the original integer problem down into a multiple-
stage decision problem, and solves the problem stage by stage.
In particular, each stage is associated with multiple states, and
the optimal decision in each stage is made based on the optimal
decision at previous stage according to a recursive relationship.
Thus, with the optimal decision at the first stage and the
recursive relationship, the optimal decision can be made stage-
by-stage and the optimal solution of original problem can be
constructed. In what follows, we solve PC1 to illustrate the
key steps of the proposed DP algorithm. These steps include
reformulating problem PC1 as a multi-stage decision problem
and finding the corresponding recursive relationship between
adjacent stages. The DP algorithm is described in Algorithm
1.

1) Multi-Stage Decision Problem Reformulation :
We divide problem PC1 into L stages and optimize the

1Specifically, the step function in (9) makes the problem hard for any
convex relaxation techniques.
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Fig. 3. An illustration of the proposed DP algorithm with CV C1
fix

= 0, CV C2
fix

= 0, NRC = 2, SR = 2 and L = 3. There are 3 stages, where the
eliminated paths from stage 1 to stage 2 are omitted. The states at stage l represent the remaining caching capacity to store the first l contents. For example,
state (1 2) at stage 2 means that RSU 1 caches content 1 or 2, and RSU 2 caches content 1 and 2 in total. The final solution first caches content 1 at both
RSU 1 and 2, then caches content 2 at RSU 2, finally caches content 3 at RSU 1.

Algorithm 1 The DP Algorithm to Solve Problem PC1

1: Initialization;
2: for all s1 ≤ [Sm]NRC×1 do
3: J1(s1) = U1(min{1, s1});
4: end for
5: for l = 2 to L do
6: for all sl ≤ [Sm]NRC×1 do
7: Initialize Jl(sl) as a large positive constant;
8: for all possible cRCl do
9: if Jl(sl) > Ul(c

RC
l ) + Jl(sl−1) then

10: Jl(sl) = Ul(c
RC
l ) + Jl(sl−1);

11: cRC∗l = cRCl
12: end if
13: end for
14: end for
15: end for
16: return the optimal cache placement matrix CRC∗.

caching scheme for the first l contents at the l-th stage.
sl = [sm,l]

L×1(0 ≤ sm,l ≤ SR) denotes the state at the l-
th stage, which represents the remaining caching capacities of
all RSUs for storing the first l contents (In PC1, we only need
to consider caching the contents in RSUs).

For state sl at the l-th stage, the cache placement problem
for the first l contents is expressed as:

PC1l : Jl(sl) = min
{cRC

n ,1≤n≤l}
Un(cRCn )

s.t.
∑l
n=1 c

RC
m,n ≤ sm,l,m = 1, 2, · · ·NRC ,

cRCm,n ∈ {0, 1} ,∀m, 1 ≤ n ≤ l,
(28)

where cRCn = [cRCm,n]NRC×1 is the caching placement vector
for content l, and

Un(cRCn ) =

2∑
j=1

NV Cj∑
i=1

µj
µ1 + µ2

p(n)

NV Cj

(α
τi,j,n
τmax

+ β
Costi,j,n
Costmax

).

(29)
For the last stage decision problem with l = L and sn,L = SR,
sL = [Sm]NRC×1 = [1SR]NRC×1, problem PC1L is expressed

as:

PC1L : JL(sL) =

min
{cRC

n ,

1≤n≤L}

L∑
n=1

2∑
j=1

NV Cj∑
i=1

µj
µ1 + µ2

p(n)

NV Cj

(α
τi,j,n
τmax

+ β
Costi,j,n
Costmax

)

s.t.
∑L
n=1 c

RC
m,n ≤ Sm,m = 1, 2, · · ·NRC ,

cRCm,n ∈ {0, 1} ,∀m, 1 ≤ n ≤ L.
(30)

It is easy to observe that problem Pc1L is equivalent to
the original problem PC1. Next we will develop a recursive
relationship between adjacent stage problems, the optimal
decision of problem PC1l can be achieved stage-by-stage.
Finally, the original problem PC1 is optimally solved.

2) Recursive Relationship : At the first stage, the optimal
decision of RSUm is to cache the first content if sm,1 ≥ 1 .
Mathematically, s1 = min{1, s1}. Thus, we have:

J1(s1) = U1(min{1, s1}). (31)

Then, the optimal decision at the l-th stage (2 ≤ l ≤ L) is
made based on the decision at l − 1-th stage by using the
following recursive relationship, and an illustration is shown
in Fig. 3.

Jl(sl) = min
{cRC

l
}

Ul(c
RC
l ) + Jl(sl−1)

s.t. cRCm,l ∈ {0, 1} ,
cRCm,l ≤ sm,l,
m = 1, 2, · · ·NRC ,

(32)

where sl−1 = sl−cRCl is the state transition equation between
adjacent stages.

Specifically, for state sl at the l-th stage, the optimal
decision of cRCl can be achieved by exhaustively searching
and finding the optimal one with the minimum value of
Ul(c

RC
l ) + Jl(sl−1), where Jl(sl−1) has been obtained at

the l − 1-th stage. Therefore, with J1(s1) and the recursive
relationship (32), problem PC1 can be optimally solved.
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3) Complexity Analysis : According to Algorithm 1,
the computational complexity of stage 1 (i.e., line2-line4) is
O((SR + 1)NRC ). For stage l (1 < l ≤ L), each RSU has
SR+1 states, and each state needs to decide whether to cache
the content l except for the 0 state, the computational complex-
ity of an RSU is O(2SR+1). So the computational complexity
of NRC RSUs (i.e., line6-line14) is O((2SR+1)NRC ). Hence,
the whole complexity is O((SR+1)NRC )+O((L−1)(2SR+
1)NRC ), i.e., O((L− 1)(2SR + 1)NRC ).

B. ADPS Joint Vehicle and RSU Caching Scheme

Problem PC1, PC2, PC3 can be solved using DP algorithm
separately. Then for problem PC , an ADPS caching scheme
is proposed in this paper. The detail of the algorithm to get
ADPS scheme is shown in Algorithm 2.

Algorithm 2 ADPS Joint Vehicle and RSU Caching Scheme

Input: Acc,Maxiter,CV C1
0 ,CV C2

0 ,CRC
0 ;

Output: CV C1
j ,CV C2

j ,CRC
j ;

1: i = 1
2: ∆ =∞
3: while (∆ > Acc) Λ (i < Maxiter) do
4: CRC

i = arg min
CRC

U(CV C1
i−1 ,C

V C2
i−1 ,C

RC) [Slove prob-

lem PC1 with algorithm 1]
5: CV C1

i = arg min
CV C1

U(CV C1 ,CV C2
i−1 ,C

RC
i ) [Slove prob-

lem PC2 with DP algorithm]
6: CV C2

i = arg min
CV C2

U(CV C1
i ,CV C2 ,CRC

i ) [Slove prob-

lem PC3 with DP algorithm]
7: ∆ =∣∣∣U(CV C1

i ,CV C2
i ,CRC

i )− U(CV C1
i−1 ,C

V C2
i−1 ,C

RC
i−1)

∣∣∣
8: i = i+ 1
9: end while

10: Imax = i; // Total number of iterations;
11: j = arg min

n=1,2,···i−1
U(CV C1

n ,CV C2
n ,CRC

n )

12: return CV C1
j ,CV C2

j ,CRC
j

The procedure of ADPS algorithm is to alternately solve
problem PC by fixing two caching matrix variables among all
the three variables. The iteration process continues until the
objective function converges. It should be noted that different
initial points might lead to different convergence points. We
set CV C1

0 , CV C2
0 and CRC

0 as zero matrices and let them be
the initial point, which means that no content is cached. The
algorithm ends when the performance of U becomes stable
after Imax iterations. It should be noted that, given all the
parameters, the algorithm is quite effective that U becomes
stable within Imax = 2 iterations.
Complexity Analysis : According to Algorithm 2, since

the computational complexity of the DP algorithm has been
analyzed, the computation complexity using DP algorithm in
line 4-6 are O((L − 1)(2SR + 1)NRC ), O((L − 1)(2SV +
1)NV C1) and O((L − 1)(2SV + 1)NV C2) respectively. So
the whole complexity of ADPS algorithm is O(Imax(L −
1)((2SR+1)NRC +(2SV +1)NV C1 +(2SV +1)NV C2)), which
increases exponentially with the number of vehicles or RSUs.

IV. LOW-COMPLEXITY COOPERATION-BASED GREEDY
CACHING SCHEME

The computational complexity of ADPS algorithm for Pc
increases exponentially with the number of vehicles or RSUs.
For large scale problem, in this section, we design a more
practical cooperation-based greedy algorithm (CBG) as a
complement to ADPS.

A. Cooperation-Based Greedy Caching Scheme

As shown in Fig. 2, a specific vehicle request can be fulfilled
by either a specific VC or RC member. If we let the VC
members and RC members cooperate with each other, then
a specific content only need to be cached in one of VC or
RC members, and this content can be fetched by a requesting
vehicle through the relay of some VC and RC members. In this
situation, the limited storage space could be fruitfully exploited
to improve the network hit ratio.

In Table II, we show the results of the caching scheme ob-
tained by using the ADPS algorithm in a small-scale scenario.
We set L = 25, SV = 1, SR = 3, Sq = 150, γ = 0.6,
NV C1

= 5 and NV C2
= 6, other parameter settings are the

same as in Section V. From this result, we can observe that,
with the increase of the number of RSUs NRC , VC and RC
start caching from the most popular content, and each member
caches different content. This caching scheme makes full use
of the cache space, so that the requesting vehicle can obtain
more content on the edge server. Inspired by this observation
and the above analysis, and in order to reduce complexity, we
propose the CBG caching scheme to use the idea of mutual
cooperation among VC and RC members. Here greedy means
the decision of which member the content is cached depends
on whether can obtain the lowest objective function value.
The algorithm to get CBG scheme is described in Algorithm
3. At first, we start caching the most popular content. For
content l, to decide which member of VC or RC to cache
it, we consider the cooperative caching behavior of all nodes,
calculate an objective value in line 3-5, and select the node
whose situation has the optimal value until the vehicle or
RSU’s cache is exhausted. For vehicles in the VC, we do not
need to consider the vehicle number sequence. The vehicle
requesting the content can cooperate with the VC member
anywhere, which has no effect on the objective value. For
RSU, which RSU caches the same content has an impact on
the value of the object. We use Fig. 4 to illustrate the concept
of line 3-5 in Algorithm 3.

B. Complexity Analysis

In Algorithm 3, the computation complexity is
O(2(SV ∗ max{NV C1

, NV C2
} + SR ∗ NRC)), where

SV ∗ max{NV C1
, NV C2

} + SR ∗ NRC is the number of
loops. It is linear with respect to the number of nodes.

V. NUMERICAL SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
caching scheme through numerical simulation. Note that both
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TABLE II
ADPS CACHING SCHEME WITH L = 25, SV = 1, SR = 3, γ = 0.85, Sq = 150, NV C1 = 5 AND NV C2 = 6.

Caching matrix ? NRC = 2 NRC = 3 NRC = 4 NRC = 5

[CV C1 ]T



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0



[CV C2 ]T



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

...
...

...
...

...
...

0 0 0 0 0 1

0





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

...
...

...
...

...
...

0 0 0 0 0 1

0





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

...
...

...
...

...
...

0 0 0 0 0 1

0





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0



[CRC ]T



0
1 0

1 0

1 0

0 1

0 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0





0
1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0





0
1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0





0
1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0


U 0.9134 0.7951 0.7217 0.6752

? The rows of all matrices in this table represent content IDs, and 0 represents zero matrix. As NRC increases, the content cached in VC remains almost
unchanged. Extra contents are cached by the newly added RSU.

the proposed two caching schemes in this paper are imple-
mented in a centralized way by BS. The optimized two-layer
cache placement indicators are distributed by BS to each RSU
and VCC, then by VCC to each vehicle. In the simulation, the
throughput of entrance 1/2 is set to be [40,36]/min. The size
of each content is set to 150 Mb. The coverage range for each
RSU is set to 200 meters, and the average speed of vehicle is
set to 20 m/s. The transmission rate to transmit content from
a vehicle/RSU/RC member/CP to the target vehicle is set to
[8,6,4,2] Mbps. The price for downloading unit data is set

to [1,4,6,10]. In addition, without loss of generality, we set
equal weights of delay and cost in the objective function, i.e.
α = β = 1.

In addition to ADPS and CBG caching schemes, five other
caching schemes are also considered for comparison.

• Popularity-Based Caching Scheme (PoBCS): Each
caching node caches the most popular contents until their
storage spaces run out. No coordination is considered.

• Probability-Based Caching Scheme (PrBCS): Each
caching node caches a particular content with a certain
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Algorithm 3 Cooperation-Based Greedy Caching Scheme

Input: CV C1
0 ,CV C2

0 ,CRC
0 ;

Output: CV C1∗
lmax−1,C

V C2∗
lmax−1,C

RC∗
lmax−1;

1: The maximum caching capacity of all vehicles and RSUs
is lmax = SV ∗max{NV C1

, NV C2
}+ SR ∗NRC ;

2: for l = 1 to lmax do
3: Select vehicles i, j from V C1, V C2 and RSU k with

extra storage space;
4: In order to cooperate with each other, if the vehicle

in the V C caches content l, there is no need to cache
content l in the RSU k, and if none of the vehicles in
the V C cache content l, then the content l needs to be
cached in the RSU k;

5: Considering all the cooperating cache situations, solve
(24) and get the optimal CV C1∗

l−1 ,CV C2∗
l−1 ,CRC∗

l−1 ;
6: end for
7: return CV C1∗

lmax−1,C
V C2∗
lmax−1,C

RC∗
lmax−1

VC1

V1,V2...VNvc1

VC1

V1,V2...VNvc1

VC2

V1,V2...VNvc2

VC2

V1,V2...VNvc2

RC

R1,R2...RNRC

RC

R1,R2...RNRC

Select vehicle i with extra 

cache space (regardless of 

vehicle number sequence)

Select vehicle j with extra 

cache space (regardless of 

vehicle number sequence)

Select RSU k with 

extra cache space 

(from R1 to RNRC)

Optimal 

value and 

scheme

Selected 

vehicles and 

RSU Vi Vj

Caching scheme (for content l)Selected 

vehicles and 

RSU Vi Vj

Caching scheme (for content l)

Rk

... ... Content l... ... Content l

Rk

... ... Content l

Selected 

vehicles and 

RSU Vi Vj

Caching scheme (for content l)

Rk

... ... Content l

Content l Content l ...Content l Content l ...

Content l
No cache 

space
...Content l

No cache 

space
...

No cache 

space
Content l ...

No cache 

space
Content l ...

Cooperating 

cache for 

content l 

(stage l)

Selected 

vehicles and 

RSU Vi Vj

Caching scheme (for content l)

Rk

... ... Content l

Content l Content l ...

Content l
No cache 

space
...

No cache 

space
Content l ...
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(stage l)

Choose the 

optimal 

caching 

scheme for 
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scheme
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Choose the 

optimal 

caching 

scheme for 

content l

Fig. 4. Conceptual illustration of line 3-5 in Algorithm 3.

probability, and this probability is related to the popular-
ity of the content. The higher probability, the more likely
the content is to be stored by vehicles and RSUs.

• Random-Based Caching Scheme (RBCS): Each
caching node determines its cached contents randomly,
without considering popularity or other parameters.

• No Caching : Each caching node does not consider
caching any content.

• Low Latency Caching P lacement (LLCP ): This
caching scheme is proposed in [19] to minimize the
average latency for cloud-based VANETs while satisfying
the QoS requirements of vehicles, and the problem is
solved effectively via simulated anneal (SA) algorithm.
The SA algorithm is also applied to our scheme for
comparison. The performance of SA algorithm is related
to the initial value.

A. The Effectiveness of Proposed CBG Caching Scheme

The effectiveness of proposed CBG caching scheme is
demonstrated in this subsection. Both the performance in terms
of delay, cost, hit ratio and the computational time of all
caching schemes are compared. Because the computational
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Fig. 5. U versus the number of RSUs with L = 25, SV = 1, SR = 3, γ =
0.85, Sq = 150, NV C1 = 5 and NV C2 = 6.
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Fig. 6. The runtime of caching schemes versus the number of RSUs with
L = 25, SV = 1, SR = 3, γ = 0.85, Sq = 150, NV C1

= 5 and NV C2
=

6.

complexity of ADPS algorithm is high, we use a small network
scenario. We set L = 25, SV = 1, SR = 3, γ = 0.85,
NV C1 = 5 and NV C2 = 6. Other parameters are the same as
before.

Fig. 5 shows how the number of RSUs affects U in (24)
for different caching schemes. U keeps decreasing when the
number of RSUs increases, except for RBCS and PoBCS. The
reason is that, when the number of RSUs increases, the total
caching capacity in the network becomes larger and vehicles
have more chances to acquire interested contents. For PoBCS,
although the total storage space has increased, each RSU
caches the same popular content, resulting in non-cooperation
between RSUs. When a vehicle requests other content, it
can only be obtained from the remote server and cannot be
obtained from the RSUs. For RBCS, each RSU determines
its cached contents randomly, without considering popularity
or other parameters. Due to randomness, the performance
of RBCS is quite unstable. Also, both of ADPS and CBG
caching schemes outperform other caching schemes, owing
to exploiting of mutual cooperation between members in VC
and RC. Most importantly, the proposed CBG caching scheme
can achieve almost the same performance with ADPS caching
scheme.
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Fig. 7. U versus caching capacity with L = 250, γ = 0.6, Sq =
150, NV C1 = 5, NV C2 = 6 and NRC = 20.
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Fig. 6 shows the runtime of all caching schemes on a
desktop computer with a 3.20 GHz Intel Core i7 processor
and 16 GB installed memory. It is straightforward that the
runtime of ADPS caching scheme increases exponentially with
the increase of NRC . The CBG caching scheme and LLCP
increase almost linearly with respect to NRC , which matches
the computation complexity analysis in Section IV. Moreover,
with the almost same delay and cost performance, the runtime
of CBG caching scheme is much lower than the ADPS caching
scheme. For example, when NRC = 6, the runtime of the CBG
caching scheme is 0.25s, while that of ADPS caching scheme’
is 5945s being prohibitively long. This phenomenon shows the
effectiveness of the proposed CBG caching scheme. Therefore,
in what follows, only the proposed well-salable CBG caching
scheme is adopted for the performance comparison in large
scale scenarios.

B. The Impact of Network Parameters on Caching Schemes

Fig. 7 shows how the caching capacity of vehicle and RSU
affects U of different caching schemes. U decreases when the
caching capacity SR and SV increase. The reason is that, with
enlarged capacity, more and more contents will be stored by
VC and RC members and then successfully delivered with
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0.6, Sq = 150, NV C1 = 5, NV C2 = 6 and NRC = 20.
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faster transmission rate and lower price, resulting in lower
delay and cost. We use Uτ and UCost to express the first part
α τav

τmax
and the second part β Costav

Costmax
in (24), their changes

with caching capacity SR are shown in Fig. 8. It can be
clearly seen that the average delay and average cost continue
to decrease as the caching capacity of RSUs increases, re-
sulting in an overall decrease in U . In addition, the proposed
CBG caching scheme outperforms other caching schemes, the
average content delivery delay and cost can be reduced by
30% and 25% respectively, and the overall reduction is 29%
with SR = 10, as compared to LLCP scheme. This is due
to the fact that the CBG caching scheme makes full use of
partnership, storage space and content popularity information.

The impact of caching capacity on average hit ratio is
investigated in Fig. 9. As expected, the average hit ratio
becomes higher with larger caching capacity. Moreover, the
proposed CBG caching scheme achieves higher hit ratio than
other caching schemes. The reason is that, VC members and
RC members cooperate with each other to avoid caching the
same contents between them, and more contents in the limited
cache space can be cached. An interesting phenomenon that
needs to be noted about PoBCS is in Fig. 7 and Fig. 9. It is
that when the vehicle caching capacity SV is less than the
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RSU caching capacity SR, U and the average hit ratio remain
unchanged. This is because that PoBCS caching the same
popular content which leads to non-cooperation between VC
members and RC members. Only after the caching capacity
of RSU exceeds the caching capacity of vehicle, after caching
other popular content, these contents can be obtained from
RSU instead of the remote server. Therefore, our proposed
CBG caching scheme has significant performance advantage
with limited caching capacity, which is the common case in
practice.

Fig. 10 shows how the parameter of Zipf distribution, γ
affects U of different caching schemes. In Fig. 10, U is
decreasing with the increase of γ except for RBCS and
No Caching scheme. The reason is that the percentage of
requests for popular content goes up when γ increases. As
a result, the cache of vehicle and RSU may provide content
and satisfy more requests when the percentage of requests
for popular content increases. No Caching scheme does not
consider caching technique, and all the contents are fetched
from the CPs with maximum delay and cost. In RBCS, every
vehicle and RSU determines its cached contents randomly,
without considering popularity or other parameters, thus its
performance is independent of γ. Also, due to randomness,
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Fig. 13. The average hit ratio versus Zipf distribution parameter with L =
250, Sq = 150, SV = 2, SR = 8, NV C2 = 6 and NRC = 20.

the performance of RBCS is quite unstable, but always outper-
forms No Caching scheme, which partially indicates the gain
achieved by applying caching. In addition, the proposed CBG
caching scheme outperforms other caching schemes when γ is
changed from 0 to 1.6. However, PoBCS and PrBCS perform
better than CBG caching scheme, when γ >= 1.8. We can
find the reason in Fig. 11. The probability of request for the
top 5 most popular content can be seen in Fig. 11. We can see
that the most popular content request’s probability is above
0.5 and that of others are all below 0.2, when γ = 1.8 and
γ = 2. The reason is that the most popular content has the
highest request probability compared to other contents when
γ is changed from 1.8 to 2. Therefore, it is worth caching
the most popular content, just like the PoBCS and PrBCS, for
high performance gains.

Existing studies [16] [34] show that γ may change from
0.65 to 0.85 according to different situations of networks.
Fig. 12 shows how γ (0.65 ≤ γ ≤ 0.85) affects the average
content delivery delay and cost of different caching schemes in
a more realistic situation. With γ increasing, a large proportion
of requests arises for the popular content. With the proposed
CBG caching scheme, the content can be kept in cache of
vehicle and RSU with the consideration of change in content
popularity. As the requesting vehicle does not need to fetch
the most popular content from other places with high delay
and cost, the average content delivery delay and cost can be
reduced, resulting in an overall decrease in U . From Fig. 12,
our proposed CBG caching scheme also outperforms PrBCS,
PoBCS and LLCP in terms of U . It can be observed that, when
the proposed CBG caching scheme is adopted, the average
delay and cost can be reduced by 24% and 19% respectively,
and the overall reduction is 21% with γ = 0.85, as compared
to LLCP scheme.

Fig. 13 shows the impact of γ and the number of vehicles
in VC on average hit ratio for different caching schemes.
The result demonstrates that CBG caching scheme can obtain
the highest average hit ratio. Besides, the average hit ratio
keeps increasing when γ increases in the aforementioned
schemes. When the size of platoon (i.e., NV C1

) increases, the
performance of PoBCS when NV C1

= 5 and NV C1
= 10

totally coincide, and this indicates PoBCS is non-cooperative



XUE et al.: TWO-LAYER DISTRIBUTED CONTENT CACHING FOR INFOTAINMENT APPLICATIONS IN VANETS 13

Wired communication
Cloud serverCloud server

Base station

4G hotspot

Base station

4G hotspot

Base station

RSUs

OBUs

Laptop1 Laptop2

Laptop3

Laptop4

4G hotspot

Power box1
Power box2

2.2GHz CPU, 16G Memory 1.6GHz, 8G Memory

2.5GHz, 8G Memory

1.6GHz CPU, 4G Memory

Fig. 14. Prototype implementation.

Fig. 15. System interface.

in nature. For the PrBCS and LLCP when NV C1
= 5

and NV C1 = 10, the increase in average hit ratio is not
obvious, The proposed CBG caching scheme can make full
use of the partnership, storage capacity, and content popularity
information to increase the average hit ratio when γ is changed
from 0 to 1. The average hit ratio is mainly affected by request
probability rather than the size of platoon when γ is changed
from 1 to 2, which is related to the definition of hit ratio in
(22). It can be observed that, when the proposed CBG caching
scheme is adopted, the average hit ratio can reach over 85%
with γ = 0.65 ∼ 0.75.

VI. TEST BED EVALUATION

In this section, we design and implement an infotainment
content transmission (ICT) system based on the proposed two-
layer architecture.

A. System Prototype Implementation

As shown in Fig. 14, we built a small scale VANETs model
using commercial OBU and RSU devices. We use Aliyun
cloud server as the content provider, which is configured
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Fig. 17. U versus Zipf distribution parameter in real-world data set with
L = 50, SV = 5, SR = 10, NV C1 = 1, NV C2 = 2 and NRC = 2.

with 2.5 GHz CPU and 4G memory. Node vehicle 1 (V1)
consists of a Cohda Wireless MK5 OBU [37] and laptop
called Laptop1. Laptop1 has 1.6 GHz CPU and 4G memory.
Similarly, V2 has 1.6 GHz CPU and 8G memory. V3 has 2.5
GHz CPU and 8G memory. Meanwhile, Laptop4 is connected
with two RSUs, with the configuration of 2.2 GHz CPU
and 16G memory. V1, V2 and V3 can communicate with
RSUs and cloud server through DSRC interface and 4G hot-
spot respectively. In addition, we made a specific database
containing a video data-set [38]. This data-set consists 50
video clips from 50 Hollywood movies with size of 8968-
9790 KB. We program each node so that they can perform the
content requesting and caching function. As shown in Fig. 15,
the node can be programmed as server or client in terms of
requirements. Each laptop in Fig. 14 is able to communicate
with RSUs and OBUs via User Datagram Protocol (UDP) [39].

B. Performance of Transmission Rate in Test Bed.

In our experiment setting, we test the real content transmis-
sion rate RV V , RRV , RRCV , RPV based on the video data-set.
Fig. 16 shows different transmission rates in real vehicular
communication environments. The average transmission rate
of RV V is very close to RRV , this is caused by the same
internal structure of Cohda Wireless MK5 RSU and OBU.
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In addition, other average transmission rates conform to the
rate assumption of the two-layer structure. The actual test data
obtained by implementing the system prototype can verify the
effectiveness of different caching schemes.

C. Performance of Caching Schemes in Real-World Data Set

We verify the effectiveness of our proposed caching scheme
through real-world data set (i.e., transmission rate, video size)
recorded by the test bed. The residence time of each vehicle
with each real RSU is set to 10s to imitate the real movement
of the vehicle. The performance of different caching schemes
using real data set is shown in Fig. 17 and Fig. 18. It is
straightforward that the average content delivery delay and
cost are decreasing. Average hit ratio increases as γ increases.
When the proposed CBG caching scheme is adopted, the
average delay and cost can be reduced by 10% and 24%
respectively, and the average hit ratio increases 30% with
γ = 0.85, as compared with PoBCS. As expected, cooperation
between different nodes plays a key role in the caching
scheme design, the proposed CBG caching scheme extremely
outperforms other caching schemes in the actual environment,
which effectively shows the advantages of our proposed CBG
caching scheme.

VII. CONCLUSION

In this paper, we expand the single-layer caching scheme
to two-layers. The average content delivery delay, cost and
hit ratio have been analytically obtained for a two-layer cloud
based VANET architecture in content caching scheme. Then,
a joint vehicle and RSU caching optimization problem has
been formulated to reduce both the transmission delay and
cost considering limited caching capacity. By solving this
optimization problem, we propose ADPS caching scheme and
low complexity CBG caching scheme. Numerical simulation
together with real test bed verification have shown the ad-
vantage of our proposed caching scheme. Specifically, the
proposed CBG caching scheme consumes remarkably shorter
runtime than ADPS caching scheme, test bed evaluation results
show that CBG caching scheme reduces delay and cost by

10% and 24% respectively, and increases hit ratio by 30% as
compared to PoBCS.

The analytical framework established in this paper can be
extended to study general cases of other QoS metrics. For the
future work, the prototype system will be further evolved from
the current hardware testing to small scale realistic internet of
vehicle environments.
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